Axial Piston
Variable Displacement Pump A10VG

Closed Circuit

Sizes 18...63
Series 1
Nominal pressure 300 bar
Peak pressure 350 bar

Contents

Ordering Code/Standard Program 2...3
Technical Data 4...7
HD1 - Hydraulic Control, Pilot Pressure Related 8
HW - Hydraulic Control, Mechanical Servo 9
DA - Hydraulic Control, Speed Related 10...11
DG - Hydraulic Control, Direct Operated 12
EZ - Electrical Two-Position Control, With Switching Solenoid 12
EP - Electrical Control, With Proportional Solenoid 13
MD - Mechanical Pivot Control (size 18 only) 14
Unit Dimensions, Size 18 15...16
Unit Dimensions, Size 28 18...19
Unit Dimensions, Size 45 21...22
Unit Dimensions, Size 63 24...25
Through Drive Dimensions 26...27
Overview of Attachments on A10VG 28
Combination Pumps A10VG + A10VG 28
High Pressure Relief Valves 29
Pressure Cut-Off, D 29
Mechanical Stroke Limiter, M 30
Rotary Inch Valve 31
Filtration Types 32
Connector Options for Solenoids 33
Installation Situation for Coupling Assembly 34
Installation and Commissioning Notes 35
Safety Instructions 36

Features

- Variable displacement axial piston pump with swashplate design for hydrostatic closed circuit transmissions
- Flow is proportional to drive speed and displacement and is infinitely variable
- Output flow increases with the swivel angle of the swashplate from 0 to its maximum value
- Flow direction changes smoothly when the swashplate is moved through the neutral position
- A wide range of highly adaptable control instruments is available for different control and regulating functions
- The pump is equipped with two pressure relief valves on the high pressure ports to protect the hydrostatic transmission (pump and motor) from overload
- The pressure relief valves also function as boost inlet valves
- An integral auxiliary pump serves as boost and pilot oil pump
- The maximum boost pressure is limited by a built-in boost pressure relief valve
Ordering Code / Standard Program

Axial piston unit
Variable swashplate design, nominal pressure 300 bar, peak pressure 350 bar
Operation
Pump in closed circuit
Size
Displacement $V_{g,\text{max}}$ in cm³
Control device
- Hydraulic control, pilot pressure related
- Hydraulic control, mechanical servo
- Hydraulic control, speed related
- Hydraulic control, direct operated
- Electrical two-position control, with switching solenoid
- Electrical control, with proportional solenoid
- Mechanical pivot control
Solenoid voltage (only for EP, EZ or DA)
- for $U = 12$ V
- for $U = 24$ V
Pressure cut-off
- without pressure cut-off (no code)
- with pressure cut-off (standard for version with DA control valve)
Neutral position switch (only for HW)
- without neutral position switch (no code)
- with neutral position switch
Mechanical stroke limiter
- without mechanical stroke limiter (no code)
- with mechanical stroke limiter, external adjustable
Spring neutral position centering (only MD)
- without spring neutral position centering (no code)
- with spring neutral position centering
DA control valve
- without DA control valve
- with DA control valve, fixed setting
- with DA control valve, mech. adjust. with control lever
- with DA control valve, fixed setting and connections for master controller
- with DA control valve, mech. adjust. with control lever and hydraulic inch valve built-on, control
- with DA control valve, mech. adjust. with control lever and hydraulic inch valve built-on, control with brake fluid
- with DA control valve, mech. adjust. with control lever and hydraulic inch valve built-on, control with mineral oil
DA control valve with control lever
- without control lever (no code)
- with control lever - anti-clockwise operation direction
- with control lever - clockwise operation direction
Series
Series 1, Index 0
Axial piston unit

Operation

Size

Control device

Series, Index

Direction of rotation

<table>
<thead>
<tr>
<th>18</th>
<th>28</th>
<th>45</th>
<th>63</th>
</tr>
</thead>
<tbody>
<tr>
<td>clockwise</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>anti-clockwise</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>

Seals

<table>
<thead>
<tr>
<th>18</th>
<th>28</th>
<th>45</th>
<th>63</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBR, shaft seal in FKM (fluor-caoutchouc)</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>

Shaft end (permissible input torque see page ?)

<table>
<thead>
<tr>
<th>18</th>
<th>28</th>
<th>45</th>
<th>63</th>
</tr>
</thead>
<tbody>
<tr>
<td>splined shaft ANSI B92.1a-1976</td>
<td>standard for single pump</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>standard for combination pump</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Mounting flange

<table>
<thead>
<tr>
<th>SAE J744 – 2-hole</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
</tr>
</tbody>
</table>

Service line ports

<table>
<thead>
<tr>
<th>18</th>
<th>28</th>
<th>45</th>
<th>63</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAE flange ports A and B, (metric fastening thread) at side (same side)</td>
<td>–</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>threaded ports A and B (metric), at side (same side)</td>
<td>●</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Auxiliary pump and through drive

<table>
<thead>
<tr>
<th>Auxiliary pump Flange SAE J744 1)</th>
<th>Splined shaft hub 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>without</td>
<td>–</td>
</tr>
<tr>
<td>with</td>
<td>–</td>
</tr>
<tr>
<td>with 82-2 (A)</td>
<td>5/8 in</td>
</tr>
<tr>
<td>101-2 (B)</td>
<td>7/8 in</td>
</tr>
<tr>
<td></td>
<td>1 in</td>
</tr>
<tr>
<td>127-2 (C)</td>
<td>1 1/4 in</td>
</tr>
<tr>
<td>without 82-2 (A)</td>
<td>5/8 in</td>
</tr>
<tr>
<td>101-2 (B)</td>
<td>7/8 in</td>
</tr>
<tr>
<td></td>
<td>1 in</td>
</tr>
<tr>
<td>127-2 (C)</td>
<td>1 1/4 in</td>
</tr>
</tbody>
</table>

Valves

<table>
<thead>
<tr>
<th>setting range</th>
</tr>
</thead>
<tbody>
<tr>
<td>250...340 bar</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>100...250 bar</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Filtration

Filtration in the suction line of the auxiliary (boost) pump	●	●	●	●
Filtration in the pressure line of the auxiliary (boost) pump, ports for external boost circuit filter, (Fe and G (Fa))	●	●	●	D
External supply (model without integral auxiliary pump - N00, K..)	●	●	●	E

Range of male connectors for solenoids (only for EP, EZ and DA)

DEUTSCH male connector injection molded, 2-pin (without quenching diode)	●	●	●	●	P
DEUTSCH male connector injection molded, 2-pin (with bi-directional quenching diode) 3)	○	○	○	○	Q
DIN male connector to Hirschmann (without quenching diode) (not for new projects)	●	●	●	●	H

1) 2-hole
2) splined shaft hub to ANSI B92.1a-1976 (splined shaft allocation to SAE J744, see pages 26-27)
3) only for control EZ and DA
4) no code = standard version, S = special version, K = combination with mounted part or mounted pump

● = available ○ = available on request – = not available □ = preferred program
Technical Data

Fluid

Before starting a project, get detailed information about the selection of pressure fluids and application conditions from our catalog sheets RE 90220 (mineral oil), RE 90221 (environmentally acceptable hydraulic fluids) and RE 90223 (fire resistant hydraulic fluids, HF).

The variable displacement pump A10VG is unsuitable for operation with HFA, HFB and HFC. For operation with HFD or environmentally acceptable hydraulic fluids, restrictions in the technical data and seal selection must be noted; inquire if necessary (please state the hydraulic fluid to be used in plain text in the order).

Operating viscosity range

For optimum efficiency and service life, select an operating viscosity (at operating temperature) within the optimum range of ν_{opt} = opt. operating viscosity 16...36 mm²/s depending on the circuit temperature (closed circuit).

Limits of viscosity range

The limiting values for viscosity are as follows:

ν_{min} = 5 mm²/s
short term (t < 3 min) at max. perm. temperature of t_{max} = +115°C.

Note that the max. hydraulic fluid temperature of 115°C may not be exceeded even locally (e.g. in the bearing area).

ν_{max} = 1600 mm²/s
short term (t < 3 min) at cold start (p ≤ 30 bar, n ≤ 1000 rpm, t_{min} = -40°C).
Only for starting up without load. Optimum operating viscosity must be reached within approx. 15 minutes.

Special measures are necessary in the temperature range from -40°C to -25°C, please contact us.

For detailed information about use at low temperatures, see RE 90300-03-B.

Selection diagram

Notes on the selection of the hydraulic fluid

To choose the correct hydraulic fluid, it is necessary to know the operating temperature in the circuit (closed circuit), depending on the ambient temperature.

The hydraulic fluid should be selected so that the operating viscosity is in the optimum range (ν_{opt}) in the operating temperature range, see selection diagram, shaded area. We recommend choosing the higher viscosity class.

Example: At an ambient temperature of \(T \)° C an operating temperature of 60° C is set in the circuit. In the optimum operating viscosity range (ν_{opt}; shaded area) this corresponds to the viscosity classes VG 46 or VG 68; choose: VG 68.

Important: The leakage oil (case drain oil) temperature is influenced by pressure and pump speed and is always higher than the circuit temperature. However, the temperature must not exceed 115°C at any point in the circuit.

If the above conditions cannot be satisfied in the case of extreme operating parameters or high ambient temperatures, please contact us.
Technical Data

Filtration
The finer the filtration, the higher the cleanliness class of the hydraulic fluid and the longer the life of the axial piston unit.

To ensure functional reliability of the axial piston unit at least cleanliness class

20/18/15 to ISO 4406 is necessary.

Depending on the system and the application, for the A10VG we recommend

| Filter Elements | \[\beta_{20} \geq 100\] |

With a rising pressure differential at the filter element, the \(\beta\) value must not deteriorate.

At very high hydraulic fluid temperatures (90°C to max. 115°C) at least cleanliness class

19/17/14 to ISO 4406 is necessary.

If the above classes cannot be observed, please contact us. For notes on filtration types, see page 32.

Shaft seal temperature range
The FKM shaft seal ring is permissible for housing temperatures of -25°C to +115°C.

Note:
For applications below -25°C, an NBR shaft seal is necessary (permissible temperature range: -40°C to +90°C).
Please state NBR shaft seal in plain text when ordering

Operating pressure range

Inlet
Variable displacement pump (with external supply, E):
For control devices EP, EZ, HW and HD1
Boost pressure (at \(n = 2000\) rpm) \(p_{bsp} \) ___________ 18 bar
For control devices DA, DG
Boost pressure (at \(n = 2000\) rpm) \(p_{bsp} \) ___________ 25 bar

Auxiliary pump:
Suction pressure \(p_{s min} (v \leq 30 \text{ mm}^2/\text{s}) \) _____ \(\geq 0.8\) bar absolute
For cold start _____ \(\geq 0.5\) bar absolute

Outlet
Variable displacement pump:
Pressure at port A or B
Nominal pressure \(p_{N} \) ___________ 300 bar
Peak pressure \(p_{max} \) ___________ 350 bar
Summation pressure (pressure A + pressure B) \(p_{max} \) ___________ 600 bar

Auxiliary pump:
Peak pressure \(p_{H max} \) ___________ size 18 25 bar
Summation pressure \(p_{H max} \) size 28, 45, 63 ___________ 40 bar
(pressure data according to DIN 24312)

Case drain pressure
The lower the speed and the case drain pressure, the longer the service life of the shaft seal ring. The values shown in the diagram are permitted maximum values for a shaft seal ring under intermittent pressure and must not be exceeded.

Stationary pressure loads within the range of the maximum permitted leakage pressure may reduce the service life of the shaft seal ring.

Pressure loads of up to 6 bar are acceptable for short periods (\(t < 5\) min), regardless of speed.

![Graph showing case drain pressure values]
Technical Data

Table of values (theoretical values, without efficiencies and tolerances; values rounded)

<table>
<thead>
<tr>
<th>Size</th>
<th>18</th>
<th>28</th>
<th>45</th>
<th>63</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displacement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variable displacement pump</td>
<td>$V_g \ max$</td>
<td>cm³</td>
<td>18</td>
<td>28</td>
</tr>
<tr>
<td>Auxiliary pump (at p = 20 bar)</td>
<td>$V_g \ H$</td>
<td>cm³</td>
<td>5.5</td>
<td>6.1</td>
</tr>
<tr>
<td>Speed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum at $V_g \ max$</td>
<td>$n_{max \ cont}$</td>
<td>rpm</td>
<td>4000</td>
<td>3900</td>
</tr>
<tr>
<td>Limited maximum ¹</td>
<td>$n_{max \ lim}$</td>
<td>rpm</td>
<td>4850</td>
<td>4200</td>
</tr>
<tr>
<td>Intermittent maximum ²</td>
<td>$n_{max \ interm.}$</td>
<td>rpm</td>
<td>5200</td>
<td>4500</td>
</tr>
<tr>
<td>Minimum</td>
<td>n_{min}</td>
<td>rpm</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Flow</td>
<td>at $n_{max \ cont}$ and $V_g \ max$</td>
<td>$q_v \ max$</td>
<td>l/min</td>
<td>72</td>
</tr>
<tr>
<td>Power ³</td>
<td>at $n_{max \ cont}$</td>
<td>$\Delta p = 300$ bar</td>
<td>P_{max}</td>
<td>kW</td>
</tr>
<tr>
<td>Torque ³</td>
<td>at $V_g \ max$</td>
<td>$\Delta p = 300$ bar</td>
<td>T_{max}</td>
<td>Nm</td>
</tr>
<tr>
<td></td>
<td>$\Delta p = 100$ bar</td>
<td>T</td>
<td>Nm</td>
<td>28.6</td>
</tr>
<tr>
<td>Moment of Inertia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(about drive axis)</td>
<td>J</td>
<td>kgm²</td>
<td>0.00093</td>
<td>0.0017</td>
</tr>
<tr>
<td>Rotational Vibration ⁴</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angular acceleration, max</td>
<td>α</td>
<td>rad/s²</td>
<td>6800</td>
<td>5500</td>
</tr>
<tr>
<td>Speed variation, max</td>
<td>Δn</td>
<td>rpm</td>
<td>18</td>
<td>17</td>
</tr>
<tr>
<td>Limit Frequency</td>
<td>f_{lim}</td>
<td>sec⁻¹</td>
<td>1170</td>
<td>1013</td>
</tr>
<tr>
<td>Rotary Stiffness</td>
<td>Shaft end S</td>
<td>Nm/rad</td>
<td>20284</td>
<td>32143</td>
</tr>
<tr>
<td></td>
<td>Shaft end T</td>
<td>Nm/rad</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Filling Capacity</td>
<td>L</td>
<td></td>
<td>0.45</td>
<td>0.64</td>
</tr>
<tr>
<td>Mass (excluding through drive) approx.</td>
<td>m</td>
<td>kg</td>
<td>14(18) ⁵</td>
<td>25</td>
</tr>
</tbody>
</table>

¹) Limited maximum speed: – at half power (e.g. at $V_g \ max$ and $pN /2$)
²) Intermittent maximum speed: – at high idling speed
– at overspeed: $\Delta p = 70...150$ bar and $V_g \ max$
– at reversing peaks: $\Delta p < 300$ bar and $t < 5$ sec.
³) Without auxiliary pump
⁴) The permissible angular acceleration or speed variation only applies to single pumps, not to combination pumps.
 The load on connection parts (e.g. through drive) must be taken into account additionally.
 at $f < f_{lim}$, the Δn indicated in the table is permitted.
 at $f > f_{lim}$, the permitted angular acceleration α indicated in the table limits the size of the speed variation: $\Delta n_{perm} = 3.04 \cdot \alpha / f$.
⁵) 14 kg: MD control, 18 kg: HD control

Determining the nominal value

Flow

\[q_v = \frac{V_g \cdot n \cdot \eta_v}{1000} \quad \text{l/min} \]

\[V_g = \text{displacement volume per revolution in cm}^3 \]

\[\Delta p = \text{differential pressure in bar} \]

\[n = \text{speed in rpm} \]

\[\eta_v = \text{volumetric efficiency} \]

\[\eta_{nh} = \text{mechanical-hydraulic efficiency} \]

\[\eta_t = \text{total efficiency} \]

Torque

\[T = \frac{V_g \cdot \Delta p}{20 \cdot \pi \cdot \eta_{nh}} \quad \text{Nm} \]

\[\eta_{nh} = \text{mechanical-hydraulic efficiency} \]

Power

\[P = \frac{2 \cdot \pi \cdot T \cdot n}{60000} = \frac{q_v \cdot \Delta p}{600 \cdot \eta_t} \quad \text{kW} \]
Technical Data

Permissible axial and radial loading on drive shaft

<table>
<thead>
<tr>
<th>Size</th>
<th>(F_q) max EM</th>
<th>18</th>
<th>28</th>
<th>45</th>
<th>63</th>
</tr>
</thead>
<tbody>
<tr>
<td>radial load, max. at distance (from shaft collar)</td>
<td>(a) mm</td>
<td>16.5</td>
<td>17.5</td>
<td>17.5</td>
<td>17.5</td>
</tr>
<tr>
<td></td>
<td>(F_q) max E</td>
<td>1000</td>
<td>2000</td>
<td>2891</td>
<td>4046</td>
</tr>
<tr>
<td></td>
<td>(b) mm</td>
<td>29</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>(F_q) max E</td>
<td>880</td>
<td>1700</td>
<td>2416</td>
<td>3398</td>
</tr>
<tr>
<td>Axial load, max.</td>
<td>(F_{ax}) EM</td>
<td>973</td>
<td>987</td>
<td>1500</td>
<td>2200</td>
</tr>
</tbody>
</table>

Note: special requirements apply in the case of belt drives. Please contact us.

Permissible input and through drive torques

<table>
<thead>
<tr>
<th>Size</th>
<th>(T_{max}) Nm</th>
<th>18</th>
<th>28</th>
<th>45</th>
<th>63</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torque (at (V_g) max and (\Delta p = 300) bar (^1))</td>
<td></td>
<td>86</td>
<td>134</td>
<td>220</td>
<td>301</td>
</tr>
<tr>
<td>Input torque, max. (^2) at shaft end S</td>
<td>(T_{E,perm.}) Nm</td>
<td>192</td>
<td>314</td>
<td>314</td>
<td>602</td>
</tr>
<tr>
<td>ANSI B92.1a-1976 (SAE J744)</td>
<td>7/8 in</td>
<td>1 in</td>
<td>1 in</td>
<td>1 1/4 in</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ANSI B92.1a-1976 (SAE J744)</td>
<td>at shaft end T</td>
<td>(T_{E,perm.}) Nm</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Through drive torque, max.</td>
<td>(T_{D,perm.}) Nm</td>
<td>112</td>
<td>220</td>
<td>314</td>
<td>439</td>
</tr>
</tbody>
</table>

\(^1\) Efficiency not taken into account
\(^2\) For drive shafts without transverse forces

Torque distribution

\(T_E \)

1st pump 2nd pump

\(T_D \)

\(T_1 \) \(T_2 \)
HD1 - Hydraulic Control, Pilot Pressure Related

Depending on the pressure difference of the pilot pressure p_{St} in the two control lines (ports Y_1 and Y_2) the positioning cylinder of the pump is supplied with control pressure via the HD1 control module. As a result, the swashplate and thus the displacement volume are continuously adjustable. A flow direction is assigned to each control line.

The characteristic curve may shift depending on the operating status (operating pressure, oil temperature) of the pump.

If the pump is also equipped with a DA control valve, autonomic operation is possible for travel drives. For DA control valves, see page 11.

For pressure cut-off, see page 29.

Please note:

The HP control must be vented to the tank in the neutral position via the external pilot controller.

Standard model

Model with DA control valve
HW - Hydraulic Control, Mechanical Servo

Depending on the actuation direction, a or b, of the control lever, the positioning cylinder of the pump is supplied with control pressure via the HW control module. As a result, the swashplate and thus the displacement volume are continuously adjustable. A flow direction is assigned to each operating direction of the control lever.

Swivel angle β at the control lever for deflection:

- Start of control at $\beta = 3^\circ$
- End of control at $\beta = 29^\circ$ (max. displacement $V_g \text{ max}$)
- Mech. stop: $\pm 40^\circ$

Torque required at the control lever approx. 170 Ncm.

The deflection of the HW control lever must be limited by the external position sensor (setpoint device).

The characteristic curve may shift depending on the operating status (operating pressure, oil temperature) of the pump.

If the pump is also equipped with a DA control valve, automotive operation is possible for travel drives, for example. For DA control valves, see page 11.

For pressure cut-off, see page 29.

Variation: Neutral position switch, L

The neutral position switch is closed when the HW control lever is in the neutral position. The switch opens if the control lever is moved out of neutral in either direction.

The neutral position switch provides a safety function for systems that require zero flow under certain operating conditions (e.g. engine start).

Technical data of neutral position switch

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load capacity</td>
<td>20 A (continuous), without switching processes</td>
</tr>
<tr>
<td>Switching capacity</td>
<td>15 A / 32 V (resistive load)</td>
</tr>
<tr>
<td></td>
<td>4 A / 32 V (inductive load)</td>
</tr>
<tr>
<td>Connector design</td>
<td>DEUTSCH male connector DT04-2P-EP04 (mating connector see page 33)</td>
</tr>
</tbody>
</table>

Model with DA control valve and neutral position switch
DA - Hydraulic Control, Speed Related

The DA control is an engine speed-dependent, or automati-
ve, type control system. The built-in DA regulating cartridge
generates a pilot pressure that is proportional to pump (engine)
drive speed. This pilot pressure is directed to the positioning
cylinder of the pump by a solenoid actuated 4/3 way direc-
tional valve. Pump displacement is infinitely variable in each
direction of flow, and is influenced by both pump drive speed
and discharge pressure. Flow direction (i.e. machine forward or
reverse) is controlled by energizing solenoid a or b.

Increasing pump drive speed generates a higher pilot pressure
from the DA cartridge, with a subsequent increase in pump
flow and/or pressure.

Dependent on the selected pump operating characteristics,
increasing system pressure (i.e. machine load) causes the
pump to swivel back towards a smaller displacement. Engine
overload (anti-stall) protection is achieved by the combination
of this pressure-related pump de-stroking, and the reduction
of pilot pressure as the engine speed drops.

Any additional power requirement, such as implement hy-
draulics, may result in further engine pull down. This causes a
further reduction in pilot pressure and therefore pump displace-
ment. Automatic power division and full utilization of available
power is thus achieved for both the vehicle transmission and
the implement hydraulics, with priority given to the implement
hydraulics.

To provide controllable reduced vehicle speed operation when
high engine speeds are required for fast implement hydraulics,
various inching options are available.

The DA regulating cartridge can also be used in pumps with
conventional control devices, such as EP, HW or HD, to provid-
e an engine anti-stall function, or as a combination of automo-
tive and displacement control functions.

Application of the DA control is only appropriate on certain
types of vehicle drive systems, and requires a review of the
engine and vehicle parameters to ensure proper application
of the pump, and safe and efficient machine operation. All
DA applications must therefore be reviewed by a Rexroth
Application Engineer.

Hydraulic control, speed dependent,
DA control valve, fixed setting, DA1D2/DA2D2

<table>
<thead>
<tr>
<th>Direction of rotation</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solenoid pressure</td>
<td>Through put flow</td>
</tr>
<tr>
<td>a X₂ B to A Mₐ</td>
<td>a X₂ B to A Mₐ</td>
</tr>
<tr>
<td>b X₁ A to B Mₐ</td>
<td>b X₁ A to B Mₐ</td>
</tr>
<tr>
<td>a X₂ A to B Mₐ</td>
<td>a X₂ A to B Mₐ</td>
</tr>
<tr>
<td>b X₁ B to A Mₐ</td>
<td>b X₁ B to A Mₐ</td>
</tr>
</tbody>
</table>

Solenoid technical data

- Voltage: 12 V (±20 %) 24 V (±20 %)
- Neutral position: Vᵩ₀ de-energized de-energized
- Vᵩₘₐₓ Current energized Current energized
- Nominal resistance (at 20°C): 5.5 Ω 21.7 Ω
- Nominal power: 26.2 W 26.5 W
- Current required, minimum effective: 1.32 A 0.67 A
- Duty cycle: 100 % 100 %
- Type of protection: see connector version on page 33

Standard:
Switching solenoid without manual emergency operation. Manual emergency operation with reset by valve spring available on request.
Function and Control of DA Control Valves

DA control valve, fixed setting (2)

Control pressure is generated in relation to drive speed. When ordering, please state in plain text: Start of control (set at factory).

DA control valve, mechanically adjustable with control lever (3)

Control pressure is generated in relation to drive speed. When ordering, please state in plain text: Start of control (set at factory).

Control pressure may be reduced, independently of drive speed, through mechanical operation of the control lever (inch function).

Max. permitted operating torque at the control lever _T max = 4 Nm
Max. angle of rotation 70°, lever position: any.

Variation 3L Operating direction of control lever anti-clockwise
Variation 3R Operating direction of control lever clockwise

Hydraulic inch valve (4, 5, 8, 9) (only for pumps with DA control device)

– for inch function; for use in conjunction with DA control valve, fixed setting (4, 8) or mechanically adjustable (5, 9)

Permits the control pressure to be reduced independently of the drive speed via hydraulic control (port Z).

Max. permitted pressure at port Z _p max ______________ 80 bar

Variation 4, 5:
Control at port Z by means of brake fluid from the vehicle braking system (hydraulically linked with the service brake).

Variation 8, 9:
Control at port Z by means of mineral oil.

Control as inch valve (7)

– for inch function; used in conjunction with DA control valve, fixed setting

Control pressure may be reduced, independently of drive speed, through mechanical operation of the master controller.

The master controller is installed separately from the pump (for example in the driver’s cabin) and connected with the pump by 2 hydraulic control lines via ports _P S and _Y.

A suitable master controller must be ordered separately and is not supplied with the unit.

Detailed information is available from our sales department and on our website www.boschrexroth.com/da-regelung. Use our computer program to work out the drive design that meets your needs. A DA control must be approved by Rexroth.

Note: see page 31 for rotary inch valves.
DG - Hydraulic Control, Direct Operated

The positioning cylinder of the pump is supplied with control pressure directly by turning a pilot pressure on or off at port X1 or X2. As a result, the swashplate and thus the displacement can be set between \(V_g \) = 0 and \(V_g \) max. A flow direction is assigned to each port.

Pilot pressure 0 bar △ Position \(V_g \) = 0

The pilot pressure requirement for the position \(V_g \) max depends on the operating pressure and speed.

Max. permitted pilot pressure: 40 bar

Please inquire when configuring.

The pressure cut-off and the DA control valve are only effective if the pilot controller for controlling the DG adjustment is supplied from port PS.

For pressure cut-off, see page 29.

Assignment Direction of rotation - Control - Direction of flow see HD1 adjustment, page 8 (control pressure X1; X2).

EZ - Electrical Two-Position Control, With Switching Solenoid

By energizing either solenoid a or b, the positioning cylinder of the pump is directly supplied with internal control pressure, and the pump swivels to maximum displacement. In this way, the swashplate and thus the displacement is switchable from \(V_g \) = 0 to \(V_g \) max. Each direction of flow is assigned to a solenoid.

Solenoid technical data

<table>
<thead>
<tr>
<th>Solenoid technical data</th>
<th>EZ1</th>
<th>EZ2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>12 V (±20 %)</td>
<td>24 V (±20 %)</td>
</tr>
<tr>
<td>Neutral position (V_g) = 0</td>
<td>de-energized</td>
<td>de-energized</td>
</tr>
<tr>
<td>Position (V_g) max</td>
<td>solenoid</td>
<td>solenoid</td>
</tr>
<tr>
<td>Nominal resistance (at 20°C)</td>
<td>5.5 Ω</td>
<td>21.7 Ω</td>
</tr>
<tr>
<td>Nominal power</td>
<td>26.2 W</td>
<td>26.5 W</td>
</tr>
<tr>
<td>Current required, minimum effective</td>
<td>1.32 A</td>
<td>0.67 A</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>100 %</td>
<td>100 %</td>
</tr>
<tr>
<td>Type of protection</td>
<td>see connector version on page 33</td>
<td></td>
</tr>
</tbody>
</table>

Standard:

Switching solenoid without manual emergency operation.

Manual emergency operation with reset by valve spring available on request.
EP - Electrical Control, With Proportional Solenoid

The positioning cylinder of the pump is supplied with control pressure via the EP control module depending on the pre-selected current strength I at the two proportional solenoids (a and b). As a result, the swashplate and thus the displacement volume are continuously adjustable. A flow direction is assigned to each proportional solenoid.

Characteristic curve EP2

Control current

<table>
<thead>
<tr>
<th>Solenoid</th>
<th>EP1 Size</th>
<th>Start of control mA</th>
<th>End of control mA</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>18, 28</td>
<td>400, 400</td>
<td>1050, 1115</td>
</tr>
<tr>
<td>b</td>
<td>45, 63</td>
<td>200, 200</td>
<td>525, 560</td>
</tr>
</tbody>
</table>

The characteristic curve may shift depending on the operating status (operating pressure, oil temperature) of the pump.

Solenoid technical data

<table>
<thead>
<tr>
<th>EP1</th>
<th>EP2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>12 V (±20 %)</td>
</tr>
<tr>
<td>Limiting current</td>
<td>1.54 A</td>
</tr>
<tr>
<td>Nominal resistance (at 20°C)</td>
<td>5.5 Ω</td>
</tr>
<tr>
<td>Dither frequency</td>
<td>100 Hz</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>100 %</td>
</tr>
<tr>
<td>Type of protection</td>
<td>see connector version on page 33</td>
</tr>
</tbody>
</table>

The following electronic control modules and amplifiers are available for actuating the proportional solenoids (details also available at www.boschrexroth.com/mobile-electronics):

- Control unit RC (see RE 95200) and application software
- Proportional amplifier PVR (see RE 95022)

If the pump is also equipped with a DA control valve (see page 11), automotive operation is possible for travel drives.

Standard:
Proportional solenoid without emergency manual operation.
Emergency manual operation with spring reset available on request.

Model with DA control valve
MD - Mechanical Pivot Control (size 18 only)

The swashplate is adjusted directly and thus the displacement volume of the pump is continuously varied depending on the position of the pivot. A rotation direction of the pivot is assigned to each flow direction.

Swivel angle β at the control lever for deflection:
Start of control at $\beta = 0^\circ$
End of control at $\beta = 17.79^\circ$ (max. displacement volume $V_{g_{\text{max}}}$)

Max. permitted operating torque at the control lever $T_{\text{max}} = 30 \text{ Nm}$

The required actuating torque is independent of the operating pressure, speed, displacement volume, design of the control plate and its torsion.

- higher operating pressure ______ higher actuating torque
- higher speed ______________ higher actuating torque
- larger displacement volume ______ lower actuating torque

Standard model (MD)
Unit Dimensions, Size 18

Hydraulic Control, Direct Operated, DG

Please request a certified installation drawing before finalizing your design.

Shaft ends

S Splined shaft 7/8in 13T 16/32DP 1)
(SAE J744 – 22-4 (B))

Ports

<table>
<thead>
<tr>
<th>Port</th>
<th>Description</th>
<th>Thread</th>
<th>Size</th>
<th>Depth</th>
<th>Torque, max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, B</td>
<td>Service line ports</td>
<td>DIN 3852</td>
<td>M27x2</td>
<td>16</td>
<td>330 Nm</td>
</tr>
<tr>
<td>T1</td>
<td>Case drain or filling port</td>
<td>DIN 3852</td>
<td>M18x1.5</td>
<td>12</td>
<td>140 Nm</td>
</tr>
<tr>
<td>T2</td>
<td>Case drain 2)</td>
<td>DIN 3852</td>
<td>M18x1.5</td>
<td>12</td>
<td>140 Nm</td>
</tr>
<tr>
<td>MA, MB</td>
<td>Pressure gauge - operating pressure A, B 2)</td>
<td>DIN 3852</td>
<td>M12x1.5</td>
<td>12</td>
<td>50 Nm</td>
</tr>
<tr>
<td>R</td>
<td>Air bleed 2)</td>
<td>DIN 3852</td>
<td>M12x1.5</td>
<td>12</td>
<td>50 Nm</td>
</tr>
<tr>
<td>S</td>
<td>Boost suction port</td>
<td>DIN 3852</td>
<td>M26x1.5</td>
<td>16</td>
<td>230 Nm</td>
</tr>
<tr>
<td>X1, X2</td>
<td>Control pressure ports (before the orifice) 2)</td>
<td>DIN 3852</td>
<td>M12x1.5</td>
<td>12</td>
<td>50 Nm</td>
</tr>
<tr>
<td>G</td>
<td>Pressure port for auxiliary circuits 2)</td>
<td>DIN 3852</td>
<td>M14x1.5</td>
<td>12</td>
<td>80 Nm</td>
</tr>
<tr>
<td>Ps</td>
<td>Control pressure supply 2)</td>
<td>DIN 3852</td>
<td>M12x1.5</td>
<td>12</td>
<td>50 Nm</td>
</tr>
<tr>
<td>Y1, Y2</td>
<td>Remote control ports (only for HD1 control)</td>
<td>DIN 3852</td>
<td>M14x1.5</td>
<td>12</td>
<td>80 Nm</td>
</tr>
</tbody>
</table>

1) ANSI B92.1a-1976, pressure angle 30°, flat root side fit, tolerance class 5
2) plugged
Unit Dimensions, Size 18

Hydraulic Control, Pilot Pressure Related, HD1

Hydraulic Control, Mechanical Servo, HW

Please request a certified installation drawing before finalizing your design.

Electrical Two-Position Control With Switching Solenoid, EZ

Electric Control With Proportional Solenoid, EP

Mechanical Pivot Control, MD

Model with neutral position switch, HWL

Mechanical Pivot Control, Spring Neutral Position Centering, MDN
Please request a certified installation drawing before finalizing your design.

Unit Dimensions, Size 28

Hidraulic Control, Direct Operated, DG

Shaft ends
S Splined shaft 1in 15T 16/32DP ¹)
(SAE J744 – 25-4 (B-B))

Ports
A, B Service ports (high pressure series) SAE J518 3/4in tightening torque, max.
Fastening thread A/B DIN 13 M10x1.5; 17 deep see safety instructions
T₁ Case drain or filling port DIN 3852 M22x1; 14 deep 210 Nm
T₂ Case drain ²) DIN 3852 M22x1; 14 deep 210 Nm
Mₐ, Mₐ Pressure gauge - operating pressure A, B ²) DIN 3852 M12x1; 12 deep 50 Nm
R Air bleed ²) DIN 3852 M12x1; 12 deep 50 Nm
S Boost suction port DIN 3852 M33x2; 18 deep 540 Nm
X₁, X₂ Control pressure ports (before the orifice) ²) DIN 3852 M12x1; 12 deep 50 Nm
G (FS) Pressure port for auxiliary circuits ²) DIN 3852 M18x1.5; 12 deep 140 Nm
Pₛ Control pressure supply, boost pressure ²) DIN 3852 M14x1.5; 12 deep 80 Nm
Y₁, Y₂ Remote control ports (only for HD1 control) DIN 3852 M14x1.5; 12 deep 80 Nm
Fₛ Filter inlet DIN 3852 M18x1.5; 12 deep 140 Nm

¹) ANSI B92.1a-1976, pressure angle 30°, flat root side fit, tolerance class 5
²) plugged
Unit Dimensions, Size 28

Hydraulic Control, Pilot Pressure Related, HD1

Hydraulic Control, Mechanical Servo, HW

Electrical Two-Position Control With Switching Solenoid, EZ

Electric Control With Proportional Solenoid, EP

Pressure Cut-Off, D
Unit Dimensions, Size 28

Hydraulic Control, Speed Dependent, DA

Control valve, fixed setting, DA2

Control valve, fixed setting and hydraulic inch valve built-on, DA4/DA8

Control valve, fixed and connections for master controller, DA7

Control valve, mech. adjustable with control lever, DA3

Control valve, mech. adjustable with control lever and hydr. inch valve built-on, DA5

Ports

<table>
<thead>
<tr>
<th>Port</th>
<th>Description</th>
<th>Diameter</th>
<th>Length</th>
<th>Tapping Size</th>
<th>Depth</th>
<th>Max. Torque</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>Pilot pressure port (plugged)</td>
<td>DIN 3852</td>
<td>8</td>
<td>M10 x 1</td>
<td>8 deep</td>
<td>30 Nm</td>
</tr>
<tr>
<td>Y</td>
<td>Pilot pressure port</td>
<td>DIN 3852</td>
<td>12</td>
<td>M14 x 1.5</td>
<td>12 deep</td>
<td>80 Nm</td>
</tr>
</tbody>
</table>
Unit Dimensions, Size 45

Hydraulic Control, Direct Operated, DG

Please request a certified installation drawing before finalizing your design.

Shaft ends

S Splined shaft 1 in 15T 16/32DP *)
(SAE J744 – 25-4 (B-B))

T Splined shaft 1 1/4in 14T 16/32DP *)
(SAE J744 – 32-4 (C))

Ports

<table>
<thead>
<tr>
<th>Port</th>
<th>Description</th>
<th>Thread</th>
<th>Diameter</th>
<th>Length</th>
<th>Torque</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, B</td>
<td>Service ports (high pressure series)</td>
<td>SAE J518</td>
<td>3/4in</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fastening thread A/B</td>
<td>DIN 13</td>
<td>M10x1.5; 17 deep</td>
<td>see safety instructions</td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>Case drain or filling port</td>
<td>DIN 3852</td>
<td>M22x1.5; 14 deep</td>
<td>210 Nm</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>Case drain</td>
<td>DIN 3852</td>
<td>M22x1.5; 14 deep</td>
<td>210 Nm</td>
<td></td>
</tr>
<tr>
<td>MA, MB</td>
<td>Pressure gauge - operating pressure A, B</td>
<td>DIN 3852</td>
<td>M12x1.5; 12 deep</td>
<td>50 Nm</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>Air bleed</td>
<td>DIN 3852</td>
<td>M12x1.5; 12 deep</td>
<td>50 Nm</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>Boost suction port</td>
<td>DIN 3852</td>
<td>M33x2;</td>
<td>18 deep</td>
<td>540 Nm</td>
</tr>
<tr>
<td>X1, X2</td>
<td>Control pressure ports (before the orifice)</td>
<td>DIN 3852</td>
<td>M12x1.5;</td>
<td>12 deep</td>
<td>50 Nm</td>
</tr>
<tr>
<td>P6</td>
<td>Control pressure supply, boost pressure</td>
<td>DIN 3852</td>
<td>M14x1.5;</td>
<td>12 deep</td>
<td>80 Nm</td>
</tr>
<tr>
<td>Y1, Y2</td>
<td>Remote control ports (only for HD1 control)</td>
<td>DIN 3852</td>
<td>M14x1.5;</td>
<td>12 deep</td>
<td>80 Nm</td>
</tr>
<tr>
<td>F6</td>
<td>Filter inlet</td>
<td>DIN 3852</td>
<td>M18x1.5;</td>
<td>12 deep</td>
<td>140 Nm</td>
</tr>
</tbody>
</table>

*) ANSI B92.1a-1976, pressure angle 30°, flat root side fit, tolerance class 5

*) center of gravity
Unit Dimensions, Size 45

Hydraulic Control, Pilot Pressure Related, HD1

Electrical Two-Position Control With Switching Solenoid, EZ

Pressure Cut-Off, D

Hydraulic Control, Mechanical Servo, HW

Electric Control With Proportional Solenoid, EP

Please request a certified installation drawing before finalizing your design.
Unit Dimensions, Size 45

Hydraulic Control, Speed Dependent, DA

Control valve, mech. adjustable with control lever, DA3

Control valve, fixed setting, DA2

Control valve, fixed setting and hydraulic inch valve built-on, DA4/DA8

Control valve, fixed and connections for master controller, DA7

Please request a certified installation drawing before finalizing your design.

Ports

<table>
<thead>
<tr>
<th>Port</th>
<th>Description</th>
<th>Thread</th>
<th>Depth</th>
<th>Torque, Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>Pilot pressure port (plugged)</td>
<td>DIN 3852 M10x1; 8 deep</td>
<td>30 Nm</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Pilot pressure port</td>
<td>DIN 3852 M14x1.5; 12 deep</td>
<td>80 Nm</td>
<td></td>
</tr>
</tbody>
</table>
Unit Dimensions, Size 63

Hidraulic Control, Direct Operated, DG

Shaft ends

S Splined shaft 1 1/4in 14T 16/32DP 1)
(SAE J744 – 32-4 (C))

T Splined shaft 1 3/8in 21T 16/32DP 1)

Ports

A, B Service ports (high pressure series) SAE J518 3/4in
Fastening thread A/B DIN 13 M10x1.5; 17 deep see safety instructions
T1 Case drain or filling port DIN 3852 M22x1.5; 14 deep 210 Nm
T2 Case drain 2) DIN 3852 M22x1.5; 14 deep 210 Nm
M, MB Pressure gauge - operating pressure A, B 2) DIN 3852 M12x1.5; 12 deep 50 Nm
R Air bleed 2) DIN 3852 M12x1.5; 12 deep 50 Nm
S Boost suction port DIN 3852 M33x2; 18 deep 540 Nm
X1, X2 Control pressure ports (before the orifice) 2) DIN 3852 M12x1.5; 12 deep 50 Nm
G Pressure port for auxiliary circuits 2) DIN 3852 M18x1.5; 12 deep 140 Nm
PS Control pressure supply, boost pressure 2) DIN 3852 M14x1.5; 12 deep 80 Nm
Y1, Y2 Remote control ports (only for HD1 control) DIN 3852 M14x1.5; 12 deep 80 Nm
F5 Filter outlet DIN 3852 M18x1.5; 12 deep 140 Nm
F6 Filter inlet DIN 3852 M18x1.5; 12 deep 140 Nm

1) ANSI B92.1a-1976, pressure angle 30°, flat root side fit, tolerance class 5
2) plugged

Please request a certified installation drawing before finalizing your design.
Unit Dimensions, Size 63

Hydraulic Control, Pilot Pressure Related, HD1

Hydraulic Control, Mechanical Servo, HW

Electrical Two-Position Control With Switching Solenoid, EZ

Electric Control With Proportional Solenoid, EP

Pressure Cut-Off, D

Please request a certified installation drawing before finalizing your design.
Unit Dimensions, Size 63

Hydraulic Control, Speed Dependent, DA

Control valve, fixed setting, DA2

Control valve, fixed setting and hydraulic inch valve built-on, DA4/DA8

Control valve, mech. adjustable with control lever, DA3

Operation direction “anti-clockwise” (3L)

Control valve, mech. adjustable with control lever and hydraulic inch valve built-on, DA5

Operation direction “anti-clockwise” (3L)

Operation direction “clockwise” (3R)

Function direction

“anti-clockwise” (3L)

“clockwise” (3R)

Ports

<table>
<thead>
<tr>
<th>Port</th>
<th>Description</th>
<th>Tightening Torque, Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>Pilot pressure port (plugged)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DIN 3852 M10x1; 8 deep</td>
<td>30 Nm</td>
</tr>
<tr>
<td>Y</td>
<td>Pilot pressure port</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DIN 3852 M14x1.5; 12 deep</td>
<td>80 Nm</td>
</tr>
</tbody>
</table>
Through Drive Dimensions

N00 without auxiliary pump, without through drive
F00 with auxiliary pump, without through drive

<table>
<thead>
<tr>
<th>Size</th>
<th>A1 (N00)</th>
<th>A1 (F00)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>169.4</td>
<td>169.4</td>
</tr>
<tr>
<td>28</td>
<td>201.7</td>
<td>215.3</td>
</tr>
<tr>
<td>45</td>
<td>216.8</td>
<td>230.5</td>
</tr>
<tr>
<td>63</td>
<td>224.5</td>
<td>238.2</td>
</tr>
</tbody>
</table>

F01/K01 Flange SAE J744 – 82-2 (A)
Hub for splined shaft according to ANSI B92.1a-1976
5/8in 9T 16/32DP ¹ (SAE J744 – 16-4 (A))

<table>
<thead>
<tr>
<th>Size</th>
<th>A1</th>
<th>A2</th>
<th>A3 ²</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>178.4</td>
<td>9</td>
<td>M10x1.5; 15 deep</td>
</tr>
<tr>
<td>28</td>
<td>219.2</td>
<td>9</td>
<td>M10x1.5; 17.5 deep</td>
</tr>
<tr>
<td>45</td>
<td>234.5</td>
<td>9</td>
<td>M10x1.5; 17.5 deep</td>
</tr>
<tr>
<td>63</td>
<td>242.2</td>
<td>9</td>
<td>M10x1.5; 17.5 deep</td>
</tr>
</tbody>
</table>

F02/K02 Flange SAE J744 – 101-2 (B)
Hub for splined shaft according to ANSI B92.1a-1976
7/8in 13T 16/32DP ¹ (SAE J744 – 22-4 (B))

<table>
<thead>
<tr>
<th>Size</th>
<th>A1</th>
<th>A2</th>
<th>A3 ²</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>187.4</td>
<td>10</td>
<td>M12x1.75; 18 deep</td>
</tr>
<tr>
<td>28</td>
<td>220.2</td>
<td>10</td>
<td>M12x1.75; 18.5 deep</td>
</tr>
<tr>
<td>45</td>
<td>235.5</td>
<td>10</td>
<td>M12x1.75; 18.5 deep</td>
</tr>
<tr>
<td>63</td>
<td>243.2</td>
<td>10</td>
<td>M12x1.75; 18.5 deep</td>
</tr>
</tbody>
</table>

¹) 30° pressure angle, flat root side fit, tolerance class 5
²) DIN 13, for tightening torques see safety instructions ³) O-Ring supplied with unit
Note: the mounting flange can be turned through 90°. Standard position is shown. Please state in plain text if required.
Through Drive Dimensions

F04/K04
Flange SAE J744 – 101-2 (B)
Hub for splined shaft according to ANSI B92.1a-1976
1 in 15T 16/32DP
(SAE J744 – 25-4 (B-B))

<table>
<thead>
<tr>
<th>Size</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>220.2</td>
<td>10</td>
<td>M12x1.75; 18.5 deep</td>
</tr>
<tr>
<td>45</td>
<td>235.5</td>
<td>10</td>
<td>M12x1.75; 18.5 deep</td>
</tr>
<tr>
<td>63</td>
<td>243.2</td>
<td>10</td>
<td>M12x1.75; 18.5 deep</td>
</tr>
</tbody>
</table>

F07/K07
Flange SAE J744 – 127-2 (C)
Hub for splined shaft according to ANSI B92.1a-1976
1 1/4 in 14T 12/24DP
(SAE J744 – 32-4 (C))

<table>
<thead>
<tr>
<th>Size</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>249.5</td>
<td>14</td>
<td>M16x2; 24.8 deep</td>
</tr>
</tbody>
</table>

1) 30° pressure angle, flat root side fit, tolerance class 5
2) DIN 13, for tightening torques see safety instructions
3) O-Ring supplied with unit

Note: the mounting flange can be turned through 90°. Standard position is shown. Please state in plain text if required.
Overview of Attachments on A10VG

<table>
<thead>
<tr>
<th>Through drive – A10VG</th>
<th>Attachment for 2nd pump</th>
<th>Through drive</th>
<th>Available for size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flange</td>
<td>Hub for splined shaft</td>
<td>Order code</td>
<td></td>
</tr>
<tr>
<td>82-2 (A)</td>
<td>5/8in</td>
<td>F/K01</td>
<td></td>
</tr>
<tr>
<td>101-2 (B)</td>
<td>7/8in</td>
<td>F/K02</td>
<td></td>
</tr>
<tr>
<td>1in</td>
<td>F/K04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>127-2 (C)</td>
<td>1 1/4in</td>
<td>F/K07</td>
<td></td>
</tr>
</tbody>
</table>

A10VG (shaft) | A4VG (shaft) | A10V(S)O/31 (shaft) | A10V(S)O/62 (shaft) | A4FO (shaft) | A11VO (shaft) | External gear pump | Available for size |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>18 (S)</td>
<td>-</td>
<td>28 (S,R)</td>
<td>28 (S,R)</td>
<td>16 (S)</td>
<td>22 (S)</td>
<td>-</td>
<td>18...63</td>
</tr>
<tr>
<td>45 (U)</td>
<td>45 (U,W)</td>
<td>28 (S)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28 (S)</td>
<td>40 (S)</td>
<td>71 (S,R)</td>
<td>60 (U,W)</td>
<td>71 (S)</td>
<td>100 (U)</td>
<td>85 (U)</td>
<td>28...63</td>
</tr>
<tr>
<td>45 (S)</td>
<td>40 (S)</td>
<td>71 (S,R)</td>
<td>60 (U,W)</td>
<td>71 (S)</td>
<td>100 (U)</td>
<td>85 (U)</td>
<td>63</td>
</tr>
</tbody>
</table>

1) Rexroth recommends special gear pump versions. Please contact us for details.

Combination Pumps A10VG + A10VG

Overall length A

<table>
<thead>
<tr>
<th>A10VG (1st pump)</th>
<th>A10VG (2nd pump) 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size 18</td>
<td>Size 18</td>
</tr>
<tr>
<td>Size 28</td>
<td>Size 28</td>
</tr>
<tr>
<td>Size 45</td>
<td>Size 45</td>
</tr>
<tr>
<td>Size 63</td>
<td>Size 63</td>
</tr>
</tbody>
</table>

1) 2nd pump without through drive and with auxiliary pump, F00

Combination pumps make it possible to have independent circuits without the need to fit splitter gearboxes.

When ordering combination pumps, the type designations of the 1st and 2nd pumps must be linked by a “+”.

Example of order:

A10VG45HW1/10R-NC10F04 + A10VG45HW1/10R-NSC10F00

A tandem pump combined of two equal sizes is permissible without additional supports where the dynamic acceleration does not exceed 10g (= 98.1 m/s²).

For combination pumps consisting of more than two pumps, the mounting flange must be rated for the permissible mass torque.
High Pressure Relief Valves

Setting diagram

Model without pressure cut-off

Model with pressure cut-off

Example: boost pressure 20 bar; operating pressure 300 bar

operating pres. $p_{AB} = \text{boost pres.} \ p_{Sp} = \text{differential pres.} \ \Delta p_{HD}$

300 bar - 20 bar = 280 bar

Example: boost pressure 20 bar; operating pressure 300 bar

operating pres. $p_{AB} = \text{boost pres.} \ p_{Sp} + \text{safety margin} = \text{differential pres.} \ \Delta p_{HD}$

300 bar - 20 bar + 20 bar = 300 bar

Note: valve setting is done at $n = 1000 \ \text{rpm and } V_{g \text{ max}} (q_{V_{1}})$

Please state in plain text when ordering:

(only the Δp_{HD} values shown in the table are possible)

<table>
<thead>
<tr>
<th>High pressure relief valve, directly operated</th>
<th>Differential pressure setting Δp_{HD}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setting range valve 3, 5</td>
<td>340 bar</td>
</tr>
<tr>
<td>Δp 250 - 340 bar</td>
<td></td>
</tr>
<tr>
<td>(see ordering code)</td>
<td>300 bar $^{1)}$</td>
</tr>
<tr>
<td></td>
<td>270 bar</td>
</tr>
<tr>
<td>Setting range valve 4, 6</td>
<td>250 bar</td>
</tr>
<tr>
<td>Δp 100 - 250 bar</td>
<td></td>
</tr>
<tr>
<td>(see ordering code)</td>
<td>200 bar $^{1)}$</td>
</tr>
<tr>
<td></td>
<td>150 bar</td>
</tr>
<tr>
<td></td>
<td>100 bar</td>
</tr>
</tbody>
</table>

$^{1)}$ Standard differential pressure setting. The valves will be set to this value if the differential pressure is not specified on ordering.

For the sake of simplicity: The bypass function is not shown in the circuit diagrams

Pressure Cut-Off, D

The pressure cut-off corresponds to a pressure regulation which, after reaching the set pressure, adjusts the displacement volume of the pump to $V_{g} = 0$.

This valve prevents the operation of the high pressure relief valves when accelerating or decelerating.

The pressure peaks occurring when the swashplate is swiveled rapidly and also the maximum pressure in the system are maintained by the high pressure relief valves.

The setting range of the pressure cut-off may be anywhere within the entire operating pressure range. However, it must be set 30 bar lower than the setting of the high pressure safety relief valves (see setting diagram).

Please state the setting value of the pressure cut-off in plain text when ordering.

Example for pressure cut-off:

Hydraulic control, speed dependent DA.D3
Mechanical Stroke Limiter, M

The mechanical stroke limiter is an additional function allowing continuous reduction of the maximum displacement volume of the pump, regardless of the control device used.

The stroke of the positioning cylinder and hence the maximum swivel angle of the pump are limited by means of two adjusting screws.

<table>
<thead>
<tr>
<th>Size</th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>M4</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>94.9</td>
<td>96.9</td>
<td>18</td>
<td>42.1</td>
</tr>
<tr>
<td>28</td>
<td>99</td>
<td>99</td>
<td>21.5</td>
<td>35</td>
</tr>
<tr>
<td>45</td>
<td>101.6</td>
<td>101.6</td>
<td>22.5</td>
<td>35.5</td>
</tr>
<tr>
<td>63</td>
<td>124</td>
<td>124</td>
<td>26.5</td>
<td>43</td>
</tr>
</tbody>
</table>

Circuit diagram

Mech. stroke limiter, M
Rotary Inch Valve

Allows the control pressure to be reduced, independently of the drive speed, through mechanical operation of the control lever. Maximum rotation angle 90°. The lever may be fixed in any position.

The valve is mounted separately from the pump and connected with the pump by the hydraulic control line at port P₃ (max. line length approximately 2 meters).

The rotary inch valve must be ordered separately.

<table>
<thead>
<tr>
<th>Size</th>
<th>Material no.</th>
<th>Operation direction of the control lever</th>
</tr>
</thead>
<tbody>
<tr>
<td>18, 28, 45, 63</td>
<td>R902048734</td>
<td>clockwise</td>
</tr>
<tr>
<td>18, 28, 45, 63</td>
<td>R902048735</td>
<td>anti-clockwise</td>
</tr>
</tbody>
</table>

Note:
The rotary inch valve can be used independently of the control device.

Unit Dimensions

Ports

<table>
<thead>
<tr>
<th>Port</th>
<th>Description</th>
<th>Tightening torque</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Pressure port</td>
<td>80 Nm</td>
</tr>
<tr>
<td>X1</td>
<td></td>
<td>80 Nm</td>
</tr>
<tr>
<td>X2</td>
<td></td>
<td>80 Nm</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>80 Nm</td>
</tr>
<tr>
<td>S</td>
<td></td>
<td>80 Nm</td>
</tr>
<tr>
<td>MA</td>
<td></td>
<td>80 Nm</td>
</tr>
<tr>
<td>T</td>
<td>Drain port (tank)</td>
<td>80 Nm</td>
</tr>
</tbody>
</table>

Unit Dimensions

Rotary inch valve (see material no.)

DA - Hydraulic Control, Speed Dependent with separately installed rotary inch valve
Filtration Types

Standard: Filtration in the suction line of the auxiliary pump, S

Standard model (preferred)

Filter type: __________________________filter without bypass

Recommendation: _____________ with contamination indicator

Flow resistance at the filter element:

- at $v = 30 \text{ mm}^2/\text{s}$, $n = n_{\text{max}}$ $\Delta p \leq 0.1 \text{ bar}$
- at $v = 1000 \text{ mm}^2/\text{s}$, $n = n_{\text{max}}$ $\Delta p \leq 0.3 \text{ bar}$

Pressure at port S of the auxiliary pump:

- at $v = 30 \text{ mm}^2/\text{s}$ $p \geq 0.8 \text{ bar}$
- at cold start ($v = 1600 \text{ mm}^2/\text{s}$, $n \leq 1000 \text{ rpm}$) $p \geq 0.5 \text{ bar}$

Filter is not supplied with the pump.

Circuit diagram - standard model S

![Circuit diagram - standard model S](image)

Variation: External supply, E

This variation should be used in models without integral auxiliary pump (N00 or K..).

The supply is provided as follows:

- Size 18 __ port S
- Size 28, 45 (without DA control valve) ___ port G
- Size 28, 45 (with DA control valve) __ port F_e
- Size 63 __ port F_a

With size 28, 45 and 63, port S is closed.

Filter arrangement: __________________________separate

For safe operation, ensure that the boost pressure fluid is of the required purity grade (see page 5).

![Circuit diagram - variation E (external supply)](image)

Dimensions variant D

<table>
<thead>
<tr>
<th>Size 28, 45</th>
<th>Size 63</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>164.9</td>
</tr>
<tr>
<td>D2</td>
<td>169.9</td>
</tr>
<tr>
<td>D3</td>
<td>65.5</td>
</tr>
<tr>
<td>D4</td>
<td>23.0</td>
</tr>
<tr>
<td>D5</td>
<td>80.5</td>
</tr>
<tr>
<td>F_e</td>
<td>M18x1.5</td>
</tr>
</tbody>
</table>

1) With sizes 28, 45, port G serves as “filter outlet F_a”.

Pressure filtration is not possible in conjunction with a control valve (see ordering code, page 3).

Variant: Filtration in the pressure line of the auxiliary pump, ports for external boost circuit filter, D

Filter inlet: Port F_o

Filter outlet: Size 63 Port F_a

Size 28, 45 Port G (F_a)

Filter type: Filters with bypass are not recommended, if using with bypass, please contact us.

Recommendation: with contamination indicator

Please note: Variant for size 28, 45 not possible in conjunction with DA control valve.

For versions with DG control device (with pilot pressure not from the boost circuit), use the following filter type:

Filter with bypass and with contamination indicator

Filter arrangement: __ separately in the pressure line (line filter)

Flow resistance at the filter element:

- at $v = 30 \text{ mm}^2/\text{s}$ $\Delta p \leq 1 \text{ bar}$
- at cold start $\Delta p \leq 3 \text{ bar}$ (valid for entire speed range n_{min} – n_{max})

Filter is not supplied with the pump.

Circuit diagram variant D

![Circuit diagram variant D](image)
Connector Options for Solenoids
(only for EP, EZ, DA)

DEUTSCH DT04-2P-EP04 (2-pin)
Molded, without bi-directional quenching diode (standard) ___________________________ P
Molded, with bi-directional quenching diode (for EZ1/2, DA) ____________________________ Q

Type of protection according to DIN/EN 60529: IP67 and IP69K
Version Q with bi-directional quenching diode is available as an option only for the switching solenoids of controllers EZ1/2 and DA.

The protective circuit with bi-directional quenching diode is required in order to limit overvoltages. The overvoltages are produced by switching off the current with switches or relay contacts or by removing the female connector while it is in the energized state.

Circuit symbol

<table>
<thead>
<tr>
<th>without bi-directional quenching diode</th>
<th>with bi-directional quenching diode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mating connector
Female connector DEUTSCH DT06-2S-EP04
Rexroth mat. no. 02601804
consisting of:
- 1 housing __________________________ DT designation
- 1 chock ____________________________ W2S
- 2 sockets __________________________ 0462-201-16141

The connector is not supplied with the pump
It can be supplied by Rexroth on request.

Hirschmann DIN EN 175 301-803-A/ISO 4400
(not for new projects)
without bi-directional quenching diode ___________________________ H

Protection class according to DIN/EN 60529: IP65
The sealing ring in the cable gland (M16x1.5) is suitable for line diameters of 4.5 mm to 10 mm.
The female connector is supplied with the pump.

Note:
The position of the plug can be changed by turning the solenoid body.

Note the following procedure:
1. Loosen the fastening nut
2. Turn the magnet body to the desired position
3. Tighten the fastening nut
 Tightening torque of fastening nut: 5 Nm (width across flat 26, double hexagon DIN 3124)
Installation Situation for Coupling Assembly

To ensure that rotating parts (coupling hub) and fixed parts (housing, circlip) do not come into contact with one another, the installation conditions described here must be observed. This depends on the size and the splined shaft.

Size 18 - 45 (with free turning):

Allow for the free turning diameter.

Size 63 (without free turning):

The outer diameter of the coupling hub must be smaller than the inner diameter of the circlip d_2 in the area of the shaft collar (dimension $x_2 - x_4$).

SAE spline (spline according to ANSI B92.1a-1976)

<table>
<thead>
<tr>
<th>Size</th>
<th>d_1</th>
<th>$d_{2_{\text{min}}}$</th>
<th>d_3</th>
<th>d_4</th>
<th>d_5</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>30</td>
<td>36.1</td>
<td>49 ±0.1</td>
<td>101.6</td>
<td>65</td>
<td>5.9 +0.2</td>
<td>9.5 -0.5</td>
<td>7</td>
<td>8 +0.9 -0.6</td>
</tr>
<tr>
<td>28</td>
<td>35</td>
<td>43.4</td>
<td>55 ±0.1</td>
<td>101.6</td>
<td>72</td>
<td>3.9 +0.2</td>
<td>9.5 -0.5</td>
<td>7</td>
<td>8 +0.9 -0.6</td>
</tr>
<tr>
<td>45</td>
<td>40</td>
<td>51.4</td>
<td>63 ±0.1</td>
<td>101.6</td>
<td>80</td>
<td>4.3 +0.2</td>
<td>9.5 -0.5</td>
<td>7</td>
<td>8 +0.9 -0.6</td>
</tr>
<tr>
<td>63</td>
<td>40</td>
<td>54.4</td>
<td>68 ±0.1</td>
<td>127</td>
<td>–</td>
<td>7.0 +0.2</td>
<td>12.7 -0.5</td>
<td>–</td>
<td>8 +0.9 -0.6</td>
</tr>
</tbody>
</table>
Installation and Commissioning Notes

General
The pump housing must be filled with hydraulic fluid during commissioning and operation (filling of housing space). Commissioning must take place at low speed and without load until the system has been bled completely.

If the pump is idle for extended periods, the housing may drain via the service lines. It is important to refill the housing sufficiently before putting back into operation.

The leak fluid in the housing space must be drained into the tank through the highest leakage oil port. Ensure a minimum suction pressure at port S of 0.8 bar abs. (cold start 0.5 bar absolute).

Installation position
Optional.

Mounting below the tank
Pump below minimum oil level in tank (standard)
- Before commissioning, fill the axial piston pump via the highest leakage oil port.
- In the “shaft upwards” installation position, make sure that the pump housing is completely filled when starting up. An air cushion in the area of the bearings will damage to the axial piston machine.
- It is advisable to fill the suction lines.
- Operate the pump at low speed (starter speed) until the pump system is completely filled (check that oil escapes from port G without bubbles; drain oil via measuring line to tank).
- In the installation position “control device upwards”, bleed air via port R.
- Minimum immersion depth of suction or leakage oil line in the tank: 200 mm (relative to minimum oil level in tank)
- Closed circuit air bleed (additionally):
 - Variable displacement motor A6VM: via port G
 - Motor with purging valve: no air bleed necessary.

Installation above tank
Pump above minimum oil level in tank
- Precautions: see installation below the tank
- Installation position (shaft upwards)

Oil may drain out of the housing via the drain line after long periods at standstill (air enters via the shaft seal). The bearings are therefore insufficiently lubricated when the pump is restarted. This problem can be prevented by means of a non-return valve in the drain line (opening pressure 0.5 bar).

On commissioning, it is imperative that the pump is filled and bled via the leakage oil port. We also recommend filling the suction line.
- Please note:
 - max. perm. suction height \(h_{\text{max}} = 800 \text{ mm} \)
 - min. perm. suction pressure at port S (see page 5)
Safety Instructions

– The pump A10VG is designed for use in closed circuits.
– The configuration, assembly and commissioning of the pump must be carried out by trained and qualified personnel.
– The service and operating ports are designed exclusively for the connection of hydraulic lines.
– Tightening torques: The tightening torques specified in this data sheet are maximum values and must not be exceeded (maximum values for screw threads). The maximum permitted tightening torques for fittings specified by their manufacturers must be observed. For DIN 13 fastening screws it is advisable to check tightening torque individually according to VDI 2230 Edition 2003.
– There is a danger of burns from the pump and especially the solenoids during and shortly after operation.
– Observe the specified data and instructions.